1	SUPPLEMENTARY MATERIAL
2	
3	A tryptophan-derived uremic metabolite-AHR-Pdk4 axis governs skeletal muscle
4	mitochondrial energetics in chronic kidney disease
5	
6 7 8	Trace Thome ¹ , Nicholas A. Vugman ¹ , Lauren E. Stone ¹ , Keon Wimberly ¹ , Salvatore T. Scali ^{2,5} , Terence E. Ryan ^{1,3,4,#}
9	¹ Department of Applied Physiology and Kinesiology, ² Division of Vascular Surgery and
10	Endovascular Therapy, ³ Myology Institute, ⁴ Center for Exercise Science, University of
11	Florida, Gainesville, FL, USA.
12	
13	⁵ Malcom Randall VA Medical Center, Gainesville, FL, USA.
14	
15	#Correspondence should be addressed to Terence E. Ryan, PhD: 1864 Stadium Rd,
16	Gainesville, FL, 32611. Tel: 352-294-1700 (office); email: ryant@ufl.edu
17	
18 19 20 21 22	 Content Included: Supplemental Tables 1-3 Supplemental Figures 1-10
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	

	Control	CKD	P value
Characteristic	(N=12)	(N=10)	(X ² or <i>t</i> -test)
Age (years) – (SD)	66.2 (6.6)	66.2 (11.5)	0.99
Female sex – no. (%)	4 (33)	4 (40)	0.86
BMI (kg/m ²) – (SD)	29.5 (7.6)	27.7 (7.9)	0.59
eGFR (mL/min/1.73*m ²) – (SD)	85.67 (14.77)	19.30 (10.34)	1.45E-10
Creatinine (mg/dL) – (SD)	0.88 (0.24)	4.55 (2.43)	3.94E-05
BUN (mg/dL) – (SD)	17.5 (5.9)	33.8 (13.4)	0.0011
Albumin (g/dL) – (SD)	4.23 (0.39)	4.53 (1.1)	0.48
Medical history – no. (%)			
Diabetes mellitus type I or II	7 (58)	3 (30)	0.36
Hypertension	8 (67)	10 (100)	0.14
Hyperlipidemia	6 (50)	7 (70)	0.61
Coronary artery disease	6 (50)	4 (40)	0.99
Congestive Heart Failure	4 (33)	3 (30)	0.76
Medication used – no. (%)			
Aspirin	7 (58)	5 (50)	0.99
Statin	11 (92)	7 (70)	0.45
ACE inhibitor	3 (25)	3 (30)	0.82
Anticoagulant	1 (8)	2 (20)	0.86
Antiplatelet	3 (25)	3 (30)	0.82

34 Supplemental Table 1: Physical and Clinical Characteristics of Human Patients

Supplemental Table 2.

Primers and Probes for RT-PCR analysis			
Gene Name	Chemistry	Sequence or Product Number	Species
Actb	Sybr Green	5'-GGCTGTATTCCCCTCCATCG-3'	Mus
		5'-CCAGTTGGTAACAATGCCATGT-3'	Musculus
Ahrr	Sybr Green	5'- GACTTCTGCAGACAGCTACA-3'	Mus
	-	5'-TGTCAAGAAGGCCGAGTACT-3'	Musculus
Ahr Exon 1-2	Sybr Green	5'-AACATCACCTATGCCAGCCG-3'	Mus
	-	5'-GGTCTCTGTGTCGCTTAGAAGG-3'	Musculus
Ahr Exons 2-3	Sybr Green	5'-AAGCTGGACAAACTCTCTGTTCTT-3'	Mus
	-	5'-GCCAGTCTCTGATTTGTGCTCTA-3'	Musculus
Arnt	Sybr Green	5'-CATCATCGGTCTAGTTCCAGTG-3'	Mus
	-	5'-CAGCATGGACAGCATTTCTTG-3'	Musculus
Atp5d	Sybr Green	5'-TGCTTCAGGCGCGTACATAC-3'	Mus
	-	5'-CACTTGCTTGACGTTGGCA-3'	Musculus
Atp5k	Sybr Green	GTTCAGGTCTCTCCACTCATCA	Mus
		CGGGGTTTTAGGTAACTGTAGC	Musculus
Cox7a1	Sybr Green	GCTCTGGTCCGGTCTTTTAGC	Mus
		GTACTGGGAGGTCATTGTCGG	Musculus
Cox8b	Sybr Green	GCGAAGTTCACAGTGGTTCC	Mus
	-	GGAACCATGAAGCCAACGAC	Musculus
Cs	Sybr Green	GGACAATTTTCCAACCAATCTGC	Mus
	-	TCGGTTCATTCCCTCTGCATA	Musculus
Cyp1a1	Sybr Green	CAGCCTTCCCAAATGGTTTA	Mus
	-	GCCTGGGCTACACAAGACTC	Musculus
Cyp1b1	Sybr Green	AGGATGTGCCTGCCACTATT	Mus
		AGCTGGAGAATCGCATTGAT	Musculus
Errα_1	Sybr Green	GGAGGACGGCAGAAGTACAAA	Mus
		GCGACACCAGAGCGTTCAC	Musculus
L32	Sybr Green	TTCCTGGTCCACAATGTCAA	Mus
		GGCTTTTCGGTTCTTAGAGGA	Musculus
Ndufa5	Sybr Green	AGCTGGATATGGTCAAGGCG	Mus
		GCCACTTCCACTGGTTAGCA	Musculus
Pdha1	Sybr Green	GAAATGTGACCTTCATCGGCT	Mus
		TGATCCGCCTTTAGCTCCATC	Musculus
Pdk1	Sybr Green	GGCCAGGTGGACTTCTATGC	Mus
		AGCATTCACTGACCCGAAGT	Musculus
Pdk2	Sybr Green	GGCGCTGTTGAAGAATGCG	Mus
	-	GGCATTGCTGGATCCGAAGTC	Musculus
Pdk3	Sybr Green	GCCCGGTACTTGTGTAGGTG	Mus
	-	TTACCTCTACCTGGGGCTCG	Musculus
Pdk4	Sybr Green	CCGCTGTCCATGAAGCA	Mus
	-	GCAGAAAAGCAAAGGACGTT	Musculus
Pdp1	Sybr Green	CGGCTCCGTGTTGTGATGA	Mus
-		TCTGACTGGGATTCCAATTCGT	Musculus

Pdp2	Sybr Green	GGACGAGGATACGAGGCTGA	Mus
		GCGTCTCCCACCTCGTAAAA	Musculus
Sdhb	Sybr Green	AATTTGCCATTTACCGATGGGA	Mus
	-	AGCATCCAACACCATAGGTCC	Musculus
Sod2	Sybr Green	ACAAACCTGAGCCCTAAGGGT	Mus
		GAACCTTGGACTCCCACAGAC	Musculus
Tbp	Sybr Green	ATCCCAAGCGATTTGCTG	Mus
		CCTGTGCACACCATTTTTCC	Musculus
Tfam	Sybr Green	ATTCCGAAGTGTTTTTCCAGCA	Mus
		TCTGAAAGTTTTGCATCTGGGT	Musculus
Ahr	Taqman	Mm00478932	Mus
			Musculus
AHR	Taqman	Hs00169233	Homo
			Sapiens
Cyp1a1	Taqman	Mm00487218	Mus
			Musculus
CYP1A1	Taqman	Hs00153120	Homo
			Sapiens
Cyp1b1	Taqman	Mm00487229	Mus
			Musculus
CYP1B1	Taqman	Hs00164383	Homo
			Sapiens
Primers used for Validation of DNA Recombination in AHR ^{mKO} Mice			
Gene Name	Primer	Sequence	Species
Ahr	Forward	5'-ATCTTGTGTCAGGAACAGGCCATC-3'	Mus
	Reverse	5'-GGTACAAGTGCACATGCCTGC-3'	Musculus

Supplemental Figure 2. (A) Graphical depiction of Cre-mediated excision of exon 2 and the DNA gel confirming muscle-specific recombination in the AHR gene in AHR^{mKO} mice treated with tamoxifen. (B) Graphical illustration of experimental procedure to validate AHR dependent mRNA signaling was abolished in AHR^{mKO} mice and guantification of IS induced Cyp1a1 gene expression (n=3/genotype/group). (C) Validation of reduced glomerular filtration rate (GFR, n=4-8/group/sex) and (D) elevated plasma blood urea nitrogen (BUN, n=3-5/group/sex) concentrations. Statistical analyses performed using two-way ANOVA with Dunnett's post hoc testing for multiple comparisons when significant interactions were detected. Error bars represent the standard deviation. **P<0.01, ***P<0.001, ****P<0.0001.

Supplemental Table 3.

Chemical Name	Supplier	Catalog No.
α-Ketoglutaric acid	Millipore-Sigma	K1750
α-keto-β-Methylvalerate	Millipore-Sigma	198978
Adenosine 5' -diphosphate (ADP)	Millipore-Sigma	A5285
Adenosine 5'-triphosphate di(tris) salt	Millipore-Sigma	A9062
hydrate (ATP)		
Alamethecin from Trichoderma viride	Millipore-Sigma	A4665
Amplex Ultra Red (AUR)	Millipore-Sigma	A36006
Antimycin A (AMA)	Millipore-Sigma	A8674
Auranofin	Millipore-Sigma	A6733
β-Nicotinamide adenine dinucleotide hydrate (NADH)	Millipore-Sigma	N1636
β-Nicotinamide adenine dinucleotide salt	Millipore-Sigma	N0632
(NAD+)		
(NADPH)	Millipore-Sigma	N1630
(NADP+)	Millipore-Sigma	N5755
Bovine serum albumin (BSA)	Millipore-Sigma	A7030
Cell lytic M	Millipore-Sigma	C2978
Creatine Kinase (CK)	Millipore-Sigma	C3755
Creatine monohydrate	Millipore-Sigma	C3630
Coenzyme A trilithium salt	Millipore-Sigma	C3019
Cytochrome c from equine heart	Millipore-Sigma	C2506
D-Glucose	Millipore-Sigma	G32030
EDTA	Millipore-Sigma	E9884
EGTA	Millipore-Sigma	E3889
Fetal Bovine Serum (FBS)	Avantar (VWR)	97068
Goat Serum	ThermoFisher Scientific	16210064
Hydrogen Peroxide, 30%	ThermoFisher Scientific	H325-100
Horseradish Peroxidase (HRP)	Millipore-Sigma	P8375
Insulin/transferrin/selenium	ThermoScientific	41400
Indoxyl sulfate potassium salt	Millipore-Sigma	13875
Indole-3-acetic acid (IAA)	Millipore-Sigma	15148
Isocitrate	Millipore-Sigma	58790
Isocitrate dehydrogenase (ICDH)	Millipore-Sigma	11877
Kynurenic Acid (KA)	Millipore-Sigma	К3375
L-Kynurenine (L-Kyn)	Millipore-Sigma	K8625
Lactate dehydrogenase/pyruvate kinase	Millipore-Sigma	P0294
Magnesium chloride hexahydrate	Research Products	M24000
	International	
Magnesium Sulfate	Millipore-Sigma	M2643
Malate Dehydrogenase	Millipore-Sigma	442610

Malic acid	Millipore-Sigma	M7397
Malonate	Millipore-Sigma	M1296
MES potassium salt	Millipore-Sigma	M0895
2-Methylbutane	Fisher Scientific	60048070
MOPS	Millipore-Sigma	M1254
Octanoyl-L-carnitine (OC)	Millipore-Sigma	50892
Oligomycin A	Millipore-Sigma	75351
Penicilin-streptomycin	ThermoFisher Scientific	15140
Pierce rapid gold BCA protein assay kit	ThermoFisher Scientific	A53225
Phosphoenol-pyruvate (PEP)	Millipore-Sigma	10108294001
Potassium chloride (KCl)	Millipore-Sigma	P9541
Potassium phosphate (K ₂ HPO ₄) dibasic	Millipore-Sigma	P3786
Potassium Phosphate (KH ₂ PO ₄) monobasic	Millipore-Sigma	P2670
Potassium Pyruvate	Combi-Blocks	QA1116
Rotenone	Millipore-Sigma	R8875
Succinic acid	Research Products	S42000
	International	
Superoxide dismutase from bovine	Millipore-Sigma	S7446
erythrocytes		
Thiamine pyrophosphate (TPP)	Millipore-Sigma	C8754
Tris-adenosine trisphosphate (ATP)	Millipore-Sigma	A9062
Tris-phosphocreatine (PCr)	Millipore-Sigma	P1937
Triton-X100	Millipore-Sigma	X100
Trypsin	Millipore-Sigma	T4799
Trypsin-EDTA (0.25%)	ThermoFisher Scientific	252000

Supplemental Figure 3. (A) qPCR analysis of genes related to mitochondrial health and function in AHR^{fl/fl} and AHR^{mKO} male/female control mice, CKD only mice, and CKD mice administered probenecid daily (n=4-7/group). (B) Relationship between JH_2O_2 and ΔG_{ATP} for male and female AHR^{fl/fl} and AHR^{mKO} with CKD and administered probenecid daily when mitochondria were energized with carbohydrates only (pyruvate/malate), fatty acids only (octanoyl-L-carnitine/malate), or mixed carbohydrate and fatty acid substrates (pyruvate/malate/octanoyl-L-carntine) (n=4-9/group). Statistical analyses performed using two-way ANOVA with Dunnett's post hoc testing for multiple comparisons when significant interactions were detected. Error bars represent standard deviation.

Supplemental Figure 4. (A) Graphical depiction of the experimental approach testing if daily systemic injections of probenecid negatively impact mitochondrial OXPHOS conductance in healthy control mice. (B) Relationship between JO_2 and ΔG_{ATP} in isolated mitochondria from the gastrocnemius muscle using carbohydrate (pyruvate/malate) fuel sources in male mice treated with vehicle (Veh, PBS) or probenecid (25mg/kg), and quantification of OXPHOS conductance (n=5/group). Statistical analyses were performed using two-tailed Student's *t*-test. Error bars represent standard deviation.

Supplemental Figure 5. (A) Myofiber area of the tibialis anterior, extensor digitorum 176 longus, and soleus of male and female AHR^{fl/fl} and AHR^{mKO} mice with CKD. (B) In vivo 177 dual forelimb grip strength, (C) in situ peroneal nerve stimulated force frequency analysis 178 and (D) maximal specific force production guantification, and (E) muscle fatigue analysis 179 of the extensor digitorum longus muscle in male AHR^{fl/fl} and AHR^{mKO} mice with CKD (n=7-180 10/group). (F) Myofiber area measurements of the tibialis anterior, extensor digitorum 181 longus, and soleus of male and female AHR^{fl/fl}/AHR^{mKO} mice treated with CKD and 182 probenecid. (G) Comparisons of in vivo dual forelimb grip strength. (H) In situ force 183 frequency, (I) maximal specific force quantification, and (J) fatigue analysis of the 184 extensor digitorum longus in AHR^{fl/fl}/AHR^{mKO} mice with CKD and probenecid. Statistical 185 analyses performed using Student's *t*-tests or two-way ANOVA with Dunnett's post hoc 186 testing for multiple comparisons when interactions were detected. Error bars represent 187 standard deviation. **P*<0.05, ***P*<0.01, ****P*<0.001, *****P*<0.0001. NS = no significance. 188 189

Supplemental Figure 6. (A) Body weights, muscle wet weights (tibialis anterior, extensor 191 digitorum longus, soleus, and gastrocnemius), and extensor digitorum longus muscle 192 fatigue quantification in male AHR^{fl/fl} and AHR^{mKO} mice with CKD only (n=7-12/group). (B) 193 Identical measurements in female AHR^{fl/fl} and AHR^{mKO} mice with CKD only (n=8-194 12/group). (C) Quantification of body weights, muscle wet weights (tibialis anterior, 195 extensor digitorum longus, soleus and gastrocnemius), and extensor digitorum longus 196 muscle fatigue in male AHR^{fl/fl} and AHR^{mKO} mice with CKD and administered probenecid 197 daily (n=5-10/group). (D) Identical measurements in female AHR^{fl/fl} and AHR^{mKO} mice with 198 199 CKD only (n=5-10/group). Statistical analyses performed using Student's t-tests or twoway ANOVA with Dunnett's post hoc testing for multiple comparisons when interactions 200 were detected. Error bars represent standard deviation. *P<0.05, **P<0.01, ***P<0.001, 201 *****P*<0.0001. 202

- 204
- 205

206

Supplemental Figure 7. (A) Validation of muscle specific expression using systemic 207 delivery of MyoAAV4a-GFP and Ahr gene expression in mouse livers. (B) Body weights, 208 209 muscle wet weights (tibialis anterior, extensor digitorum longus, and soleus), in vivo dual forelimb grip strength, *in* situ peroneal nerve stimulated force frequency (absolute force) 210 211 and maximal specific force production of the extensor digitorum longus, quantification of in situ extensor digitorum longus fatigue, and the relationship between JH_2O_2 and ΔG_{ATP} 212 213 in isolated mitochondria from the gastrocnemius energized with multiple substrate 214 combinations in CKD males with either MyoAAV-GFP or MyoAAV-shAHR (n=7-10/group). (C) Identical measurements in female mice (n=7-10/group). Statistical 215 216 analyses performed using Student's *t*-test. Error bars represent standard deviation.

Supplemental Figure 8. (A) Muscle wet weights in male and female AAV-CAAHR mice compared to AAV-GFP controls (n=7-19/group). (B) In situ extensor digitorum longus force frequency (absolute force) and maximal specific force in males (n=6-8/group) and (C) females comparing AAV-GFP controls with AAV-CAAHR mice (n=8/group). (D) Quantification of mitochondrial matrix dehydrogenase activity in isolated mitochondrial from males (n=6-7/group) and (E) females (n=7-9/group) with ectopic expression of the AAV-CAAHR or AAV-GFP. Statistical analyses performed using Student's t-test and two-way ANOVA with Dunnett's post hoc testing for multiple comparisons when significant interactions were detected. Error bars represent the standard deviation. **P<0.01, *****P*<0.0001.

Supplemental Figure 10. AHR activation increased *Pdk4* expression and PDHE1a phosphorylation. (A) qPCR of *Pdk4* mRNA expression in C2C12 muscle cells treated with DMSO or indoxyl sulfate (IS, 100μ M) (n=6/group). (B) Western blotting of phosphorylated and total PDHE1a protein expression in C2C12 muscle cells treated with DMSO or indoxyl sulfate (IS, 100µM) (n=3/group). (C) qPCR of Pdk4 mRNA expression in C2C12 muscle cells treated with DMSO or L-Kynurenine (L-Kyn, 100µM) (n=6/group). (D) Western blotting of phosphorylated and total PDHE1α protein expression in C2C12 muscle cells treated with DMSO or L-Kynurenine (L-Kyn, 100µM) (n=3/group). (E) Uncropped blots and gels related to data in (B) and (D). Data analyzed using two-tailed Student's *t*-test. Error bars represent standard deviation. **P*<0.05, ***P*<0.01.